精品无码av无码免费专区_久久久精品高清_狠狠精品干练久久久无码中文字幕_无码aⅴ精品一区二区三区浪潮 _草草视频在线免费观看_欧美黑人经典片免费观看_国产精品视频一二三四区_亚洲免费视频播放_aaa毛片在线观看_法国空姐在线观看免费_天天色综合社区_香蕉视频色在线观看

你的位置:首頁 > 品讀時事 > 科技汽車

JFD:為什么富鋰錳基正極材料產業化應用不現實?

2015-7-10 15:02:57??????點擊:

JFD:為什么富鋰錳基正極材料產業化應用不現實?

富鋰錳基層狀固溶體正極材料現在在國際國內都熱得發紫,因為它的材料設計思路和電化學行為跟其它正極材料有很大區別,所以筆者將它單獨拿出來討論。

富鋰錳基層狀固溶體有人叫它L i t h i u m r i c h manganese-based layer oxide  compounds,也有人叫它HE-NMC或者LMR-NMC,韓國和日本鋰電同行叫它Over-lithiuated  oxides(OLO),鑒于日韓在國際鋰電界的影響力,筆者暫且也稱呼它為OLO。

OLO國際上一般認為這個材料最早是由美國ANL的M.M.  Thackeray小組開始系統性研究,在2001年申請專利2004年正式提出了富鋰錳基層狀固溶體正極材料這個概念。不過J.R.Dahn在2001  年JES上的一篇文章其實也報道了類似的材料,只不過他當時沒有特別提出這個概念而已。

最基本的材料設計思路,是利用結構單元而不是簡單的陽離子或者陰離子摻雜來穩定層狀材料的晶體結構,這種電化學惰性的結構單元和層狀材料在晶體結構上具有相容性。這樣,層狀材料就可以充電到更高電壓而釋放更高的容量,同時能保持晶體結構的穩定。類似的策略,我們也可以在  -Al2O3Na離子導體( -Al2O3尖晶石單元穩定的Na2O)和Ag離子導體  Ag44I53(C11H30N33)3(C11H30N33+穩定的AgI)看到。ANL最開始研究了i2MnO3穩定的層狀(layered-  layered)和尖晶石(layered-spinel)兩個系列的正極材料,但是由于layered-spinel材料容量較低就放棄了,轉而集中精力研究layered-layered(OLO)材料。

OLO富鋰錳基固溶體正極材料用xLi[Li1/3Mn2/3]O2?(1–x)LiMO2來表達,其中M為過渡金屬(Mn, Ni, Co,  Ni-Mn等),分子式也可寫為Li[Lix/3Mn2x/3?M 1 – x ] O 2。由于富鋰正極材料組分復雜( M / M n 組合方式以及x 的變化) ,  導致其材料的結構非常復雜,有研究者認為它由Li2MnO3和LiMO2兩種層狀材料的固溶體,也有人認為在LMO2體相中存在Li2MnO3團簇,到目前為止也沒有完全搞清楚。但筆者認為,這應該與材料的制備方式有很大的關系。比如即便是采用最有效的共沉淀法,如果工藝參數不同也會在前驅體里造成過渡金屬的分相而達不到原子級水平的均勻分布,就更不必說半固相法/固相法了。

OLO材料有著跟其它正極材料很不一樣的充放電機理,在首次充放電過程中Li離子脫出/嵌入會導致OLO材料結構變化。一般來說,xLi2MnO3?(1–x)LiMO2首次充電可以分為兩步。第一步,當電壓小于4.5  V  時,隨著Li+的脫出,過渡金屬離子發生氧化還原反應:xLi2MnO3?(1–x)LiMO2→xLi2MnO3?(1–x)MO2+(1–x)Li。在LiMO2的Li層中的Li脫嵌的同時,Li2MnO3的過渡金屬層中位于八面體位置的Li會擴散到在的Li層中的四面體位置以補充Li離子,并提供額外的鍵能保持氧緊密堆積結構的穩定性。因此Li2MnO3可以看作低鋰狀態時富鋰材料的一個蓄水池,具有保持結構穩定的作用;第二步,當電壓高于4.5V  時,鋰層和過渡金屬層共同脫出Li+,同時鋰層兩側的氧也一起脫出,也就是相當于脫出了Li2O,其反應式可表示為xLi2MnO3?(1–  x)LiMO2→xLiMnO3?(1–x)MO2+  xLi2O。與深度充電時高氧化態的Ni4+會導致顆粒表面氧原子缺失相似,高充電電壓時富鋰正極材料的電極表面也會有O2析出。結果首次充電結束后凈脫出為Li2O,在隨后的放電過程中凈脫出的Li2O不能回到OLO的晶格中,這也是OLO材料首次循環效率偏低的重要原因之一。筆者這里要指出的是,由于OLO結構的復雜性,對于OLO充放電過程的具體機理以及額外的容量來源問題目前仍然存在很多爭議,很多細節問題仍然有待深入研究。

OLO可以采用很多方法進行制備,但是具有工業意義的合成方法僅限于共沉淀法。共沉淀法根據沉淀劑的不同又可以分為氫氧化物體系,碳酸鹽體系和草酸鹽體系。如果直接照搬三元材料的氫氧化物共沉淀工藝,制備的OLO電化學性能并不理想,主要的原因是Mn容易被氧化而導致前驅體分相,燒結產物很容易形成  Li2MnO3團簇,并且氫氧化物前驅體太致密。在共沉淀過程中采用N2氣體保護并且調整絡合劑摩爾比可以解決這個問題,但生產綜合成本會有所提高。草酸鹽體系則存在成本較高以及廢水的處理問題。就目前而言,電化學性能好的OLO一般都是采用碳酸鹽共沉淀工藝制備前驅體。但是碳酸鹽共沉淀法也存在工藝不穩定的問題,所以OLO的生產工藝仍然需要深入研究,產品批次的一致性問題仍然需要改善。

關于OLO的成分問題,國際上比較一致的觀點是僅僅使用Ni和Mn是不可能獲得比較好的電化學性能的。要想獲得比較好的綜合性能,Co是必須的而且含量不能太低(至少10%)。如果考慮到前驅體階段獨特的合成工藝,燒結過程需要50%過量的鋰鹽,以及材料表面包覆改性后處理,那么OLO的整體生產成本并不比普通三元材料具有絕對優勢。

目前OLO最突出的優點是高容量和高電壓,0.05C做到250以上接近300的容量很容易。除了高容量和高電壓這兩個優點以外,OLO其它方面就幾乎都是缺點了。有些問題是可以得到改善,比如首次效率可以通過表面包覆改性或者特殊的表面活化工藝提高到85%接近90%,目前首效已經不是很大問題了。倍率目前3C已經可以達到200了,一般的小倍率應用也可以。振實密度目前還較低基本上不能超過1.8。振實和壓實不是不能做高,而是做高了影響倍率和容量發揮而得不償失。跟LNMS相似,OLO的全電池數據跟半電池數據會有較大的差異,因此對于這個材料而言扣電數據僅能參考而已。目前國際上已經有幾家公司可以提供中試級的OLO樣品,筆者的測速數據顯示BASF的樣品綜合性能較好。2.0-4.8V(扣電)的區間內0.05C可以釋放的容量,1  C和3 C的容量分別為2 5  0mAh/g和200mAh/g,使用Novolyte的特種高壓電解液在全電池里面可以循環接近300周的水平(70%容量保持率)。

但是從技術角度來說,OLO材料有幾個問題目前還很難解決,甚至可以說是無法解決:

OLO材料的循環性目前還是一個很大的問題。由于OLO在循環過程中存在著層狀向尖晶石的不可逆相轉變過程,富鋰材料在首次循環后其組成中有一部分是以LiMnO2的形式參與電化學循環過程的,由于結構的變化導致其循環穩定性較差。有報道顯示,OLO的循環性與庫侖效率以及在高電位區間的停留時間和溫度有很大的關聯。

筆者個人認為,跟LMO的情況類似Mn的溶解也應該是影響OLO循環性的一個重要因素,而且溶解在高電壓和高溫下會更加明顯。當然,電解液氧化造成的界面阻抗增加也是其循環性惡化的一個重要原因。可見,OLO循環性差是多方面問題的綜合體現。OLO的循環性目前比較好的結果是在全電池里面100%  DOD循環200-300次而已,再進一步提高的難度就比較大了。

O L O存在明顯的電壓衰減問題(v o l t a g  efade),電壓衰減在前幾周較明顯,隨后的循環中減小,并且隨著測試溫度和充電電壓的身高而更加嚴重。造成的原因目前還不是很清楚,可能與材料的失序和重排造成的缺陷,過渡金屬的遷移以及過高的充電電壓都有關系。電壓衰減問題將給電池模塊的BMS設計帶來了相當的難度。“layered-  layerdd-spinel” composition  有可能緩解這個問題,但筆者認為這個idea在工業上比較難實現。OLO同時又存在電壓滯后問題(voltagehysteresis),這樣使得它相對于其他正極材料而言能量效率比較低(請注意庫侖效率和能量效率的區別),這對于電動汽車和儲能的應用將是個大問題。導致voltage  fade 與voltage  hysteresis的原因可能有一定的關聯,但它們是兩個完全不同的概念。同時具有這兩個問題是OLO跟其它正極材料在電化學行為上的顯著不同點。

OLO的安全性問題很大,在首次充電過程中就伴隨著氧氣的釋放。常規碳酸脂基電解液在4.6V以上分解比較厲害,電解液的氧化導致OLO產氣問題非常嚴重,并且OLO本身在DSC上的放熱溫度比LCO還低。與OLO相關的安全性問題,目前研究得還不是很多。筆者要強調的是,不管是對以3C小電池還是大型動力電池而言,安全性是高于其他任何性能指標處在第一位的。表面包覆改性可以在一定程度上改善OLO的安全性,目前效果比較理想的是AlPO4和  AlF3包覆,但包覆在產業化生產上仍然比較困難。

所屬頻道:  關鍵詞: 正極材料富鋰錳基鋰電池

OLO的溫度性能和倍率性能并不理想。雖然的高溫性能不錯的,但是低溫性能則比較差,這與OLO的電子電導和離子電導隨溫度的變化規律有關。但是對于鋰離子電池而言,高溫總是有害的因而要盡可能避免。OLO的倍率性能則主要取決于材料的離子擴散系數,而富鋰固溶體材料的離子擴散系數較低,使得其倍率性能并不理想。

電解液的匹配問題。OLO材料的工作電壓窗口較高,目前商業化的碳酸脂基電解液并不能滿足需要,電解液在高電位下氧化非常嚴重,使得此類材料在全電池中存在嚴重的產氣問題而帶來安全隱患。筆者認為,電解液將是制約OLO實際應用的瓶頸因素。

以上我們分析了OLO材料面臨的技術難題,那么我們接下來分析一下這個材料的應用市場定位問題。由于OLO具有高電壓高容量的優點,很多人首先想到的是在3C高容量小電池上的應用。

雖然OLO在質量能量密度上有一定優勢,但是因為OLO的壓實密度較低,其體積能量密度只能達到4.35V LCO的水平而比4.4V  LCO要低。OLO沒有電壓平臺并且電壓變化區間高達1.5V,筆者實在是想不出來有哪種民用電子設備可以承受如此大的工作電壓范圍,所以筆者到目前為止也沒搞明白這個材料會在那個領域派上用場。當然從理論上來說,可以通過DC/DC轉換來提升電壓,但一般而言直流轉換會造成10-20%的能量損失。所以,如果考慮到直流轉換器的效率和成本以及OLO自身的體積能量密度等因素,OLO材料在小型高容量型電池上的應用前景依舊并不明朗。那么動力電池領域呢?筆者在上面羅列的OLO的5大技術難題,在短時間之內都是很難解決的,所以筆者并不認為OLO可以應用在動力電池領域。

那么是不是說OLO就完全沒有實際應用的可能呢?理論計算表明,只有當正極材料的容量超過200以上,高容量負極才會在電池的整體能量密度上體現出優勢。OLO跟Si/C復合負極材料搭配可以達到300wh/kg以上的高能量密度,這在軍用宇航等特殊場合還是有些應用價值的,當然其市場不會太大。綜上所述,筆者個人認為,由于OLO自身的技術瓶頸以及市場定位等方面的原因,OLO在2020年前產業化的可能性仍然很低。

小結:

以上我們綜合分析了有希望應用在高容量消費電子類小型鋰離子電池上的正極材料,我們可以看到它們的應用除了材料自身的技術原因以外,其實很大程度上受到外部因素的制約,比如高壓電解液的開發以及市場的培育發展等等因素。在鋰電領域,一般而言,一種新材料從首次發現報道到實際產業化應用,基本上都得一二十年的時間甚至更長,遠遠落后于人們預期,這其中總是充滿了無數艱辛和微小的技術進步。對現有材料的進一步改進和新材料的探索,仍然是鋰電正極材料研發的基本方向。

  原標題:JFD:為什么富鋰錳基正極材料產業化應用不現實?

來源:高工鋰電網    揚州君昊電氣 m.zhaodezhu1743.com 轉載此文。

 

精品无码av无码免费专区_久久久精品高清_狠狠精品干练久久久无码中文字幕_无码aⅴ精品一区二区三区浪潮 _草草视频在线免费观看_欧美黑人经典片免费观看_国产精品视频一二三四区_亚洲免费视频播放_aaa毛片在线观看_法国空姐在线观看免费_天天色综合社区_香蕉视频色在线观看
青娱乐国产精品视频| 蜜桃福利午夜精品一区| 极品粉嫩美女露脸啪啪| 日本三级免费网站| 中文字幕无码精品亚洲资源网久久| 亚洲免费999| 中文字幕网av| 亚洲狼人综合干| 国产三级日本三级在线播放| 日韩精品―中文字幕| 婷婷五月综合缴情在线视频| 996这里只有精品| 免费的一级黄色片| 国产欧美久久久久| 精品人妻人人做人人爽| 久久成人福利视频| 国产中文字幕二区| 欧美国产亚洲一区| 久久久久免费精品| 在线观看高清免费视频| 国产福利在线免费| 日韩a一级欧美一级| 国产三级中文字幕| 欧美这里只有精品| 丰满爆乳一区二区三区| 凹凸日日摸日日碰夜夜爽1| 狠狠热免费视频| xxww在线观看| 日韩欧美色视频| 国产精品国产三级国产专区51| 国产欧美精品aaaaaa片| 欧美二区在线视频| 中文字幕天天干| 91免费网站视频| 欧美性猛交内射兽交老熟妇| 人妻夜夜添夜夜无码av| 亚洲色欲综合一区二区三区| 日本在线观看免费视频| 一级一片免费播放| 妞干网在线视频观看| 污污视频网站免费观看| 久久人人爽人人片| 欧美在线一区视频| 午夜精品在线免费观看| 一级片免费在线观看视频| 日韩人妻一区二区三区蜜桃视频| 人妻少妇精品无码专区二区| 免费看a级黄色片| 超碰中文字幕在线观看| 久久亚洲中文字幕无码| 91亚洲免费视频| 2018中文字幕第一页| 又色又爽又高潮免费视频国产| www.久久久精品| 18禁裸男晨勃露j毛免费观看| 免费无码国产v片在线观看| 污视频网站观看| 日韩a级在线观看| 天美星空大象mv在线观看视频| 香蕉视频色在线观看| 久久久999视频| 中文字幕55页| 丰满少妇被猛烈进入高清播放| 17c国产在线| 黄网站欧美内射| 午夜xxxxx| 国产精品沙发午睡系列| 黄色高清视频网站| 久久午夜夜伦鲁鲁一区二区| 超碰10000| 天天操,天天操| 国产精品无码av在线播放| 91精品国产三级| 日韩中文字幕组| 欧美日韩福利在线| 国产女同无遮挡互慰高潮91| 国内精品在线观看视频| 一区二区三区四区毛片| 国产1区2区在线| 大西瓜av在线| 黄瓜视频免费观看在线观看www| 97视频在线免费播放| 日本男女交配视频| 人人爽人人爽av| 国产精品久久久久9999小说| 日本五级黄色片| 91香蕉视频在线观看视频| 亚洲五月天综合| 黄色av网址在线播放| 粉嫩av一区二区三区天美传媒 | 99久久久精品视频| 中文字幕色网站| 日韩福利视频在线| 18禁免费无码无遮挡不卡网站| 超薄肉色丝袜足j调教99| 国产精品自在自线| 麻豆三级在线观看| 亚洲综合在线网站| 黄色高清无遮挡| 欧美视频免费播放| 国内性生活视频| 亚洲熟妇av日韩熟妇在线| 欧美一级中文字幕| 久久久久久久免费视频| 成人高清在线观看视频| 欧美日韩精品区别| 日韩欧美亚洲另类| 最新国产黄色网址| 性生活免费在线观看| 国产免费又粗又猛又爽| 丁香婷婷激情网| 男人女人黄一级| 国产xxxxx视频| www.xxx亚洲| 国产xxxxx视频| 无码无遮挡又大又爽又黄的视频| av免费观看网| 超碰97人人射妻| 熟女人妇 成熟妇女系列视频| 18禁男女爽爽爽午夜网站免费| 男人操女人逼免费视频| 国产免费一区二区三区视频| 日韩黄色片视频| 五月婷婷狠狠操| 玖玖爱视频在线| 成年人网站av| 8x8x华人在线| 91免费黄视频| 成人免费观看视频在线观看| 成人黄色片视频| 三级视频中文字幕| 91性高潮久久久久久久| 2022中文字幕| 好吊妞无缓冲视频观看| 免费黄色福利视频| 色哟哟精品视频| 亚洲欧美一区二区三区不卡| 亚洲第一综合网站| 黄色成人在线看| 欧在线一二三四区| 福利视频999| www.一区二区.com| 男女高潮又爽又黄又无遮挡| www.超碰com| 亚洲欧美一区二区三区不卡| 日韩国产小视频| 国产av无码专区亚洲精品| 久久国产这里只有精品| 干日本少妇视频| 精品少妇一区二区三区在线| 亚洲视频在线观看一区二区三区| 一级做a免费视频| www.男人天堂网| 可以在线看的黄色网址| 99精品999| 欧美一级视频免费看| 免费涩涩18网站入口| 一级全黄肉体裸体全过程| 成人午夜精品久久久久久久蜜臀| 六月丁香婷婷激情| 韩国一区二区在线播放| 久在线观看视频| 91女神在线观看| 欧美精品卡一卡二| 亚洲综合欧美在线| 18禁裸男晨勃露j毛免费观看| 爆乳熟妇一区二区三区霸乳| 国产在线拍揄自揄拍无码| 久久人妻精品白浆国产 | 久久久久久久9| 国产又黄又猛又粗又爽的视频| 日本一二三四区视频| 97国产在线播放| 国产精品中文久久久久久| 青青青在线播放| 日本天堂免费a| 亚洲精品久久久中文字幕| 日韩av在线播放不卡| 极品粉嫩美女露脸啪啪| 日韩精品―中文字幕| www.超碰97.com| 国产网站免费在线观看| 麻豆md0077饥渴少妇| 无码内射中文字幕岛国片| 欧美激情亚洲天堂| 在线观看免费av网址| 欧美色图色综合| 天堂av在线中文| 亚洲精品www.| 37pao成人国产永久免费视频| 51xx午夜影福利| wwwwwxxxx日本| 麻豆av免费在线| 日韩黄色短视频| 先锋影音男人资源| jizz大全欧美jizzcom| 男女av免费观看| 国产3p露脸普通话对白| 青青视频免费在线| 日韩a一级欧美一级|